Search results

Search for "photodynamic therapy (PDT)" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • enhancing SOD, GPx, and CAT activities [166]. Second, nanoantioxidants can be used to support cancer therapies such as photodynamic therapy (PDT) and photothermal therapy (PTT) [167]. In this strategy, nanomaterials with antioxidant activities enhance PDT and PTT efficacy by reducing hypoxia in the tumor
PDF
Album
Review
Published 12 Apr 2024
Graphical Abstract
  • microenvironment (TME) prone to hypoxic conditions [46]. Insufficient oxygen reduces ROS generation, which decreases the efficacy of oxygen-dependent therapies, such as photodynamic therapy (PDT), chemodynamic therapy (CDT), and radiation therapy. The information derived from the positive contribution of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • for enhancing the effects of ferroptosis and CDT. The utilization of photosensitizers and sonosensitizers in bionanotechnology contributes to the exploration of more efficient tumor treatment strategies. Photodynamic therapy (PDT) can activate photosensitizers by light radiation and induce the
PDF
Album
Review
Published 27 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • therapy (PDT) employs a light-sensitive medicine (photosensitizer) and a light source to destroy abnormal cells [72][73]. The photosensitizer absorbs the light and is activated to kill target tissue. In many cases, reactive oxygen species (ROSs) such as singlet oxygen (1O2) generated from 3O2 by a
  • S–S linkages by intracellular glutathione (GSH). As the result, both gene editing by sgRNA/Cas9 and gene silencing by the antisense DNA cooperatively suppressed the PLK1 gene, providing remarkable antitumor activity. 4 CyD-based nanoarchitectures for effective photodynamic therapy Photodynamic
PDF
Album
Review
Published 09 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • ]. BODIPY-AuNP conjugates and BODIPY-AuNP composites were also reported for diagnosis and photodynamic therapy (PDT) [15][16][17]. Hence, we aimed to synthesize a common halogenated BODIPY compound (BDP) and further modified Au-LNPs with BDP for synergized PTT (Scheme 1). According to [8], we prepared Au
PDF
Album
Full Research Paper
Published 02 Dec 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • biomedicine. Titania nanomaterials for phototherapeutic applications Phototherapy breakthroughs, including photodynamic therapy (PDT) and photothermal therapy (PTT), have established new frontiers in the therapy of cancer and other chronic diseases. The process of inducing cell death using ROS-producing
  • photosensitive materials, followed by irradiation of the target lesion with the light of a particular wavelength, is known as photodynamic therapy (PDT), while PTT is an extension of PDT that causes photon-mediated localized temperature elevation specifically by utilizing infrared radiation, which stimulates
PDF
Album
Review
Published 14 Feb 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • properties of the nanoparticles [69]. The use of amino acids coordinated with metal ions and the encapsulation of guest molecule photosensitizers have also achieved encouraging results. Zhang et al. [70] developed an antitumor photodynamic therapy (PDT) nanoparticle based on the coordination of modified
PDF
Album
Review
Published 12 Oct 2021

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • ; few-layer graphene (FLG); hybrid nanomaterial; photodynamic therapy (PDT); photosensitizer; Introduction The frequency of fungal infections has notably increased in the last decades; for instance, Candida albicans is now reported as the fourth cause of nosocomial septicemia in the United States [1
  • fungal infections, employs visible light to activate photosensitive molecules, known as photodynamic therapy (PDT) [4]. PDT was discovered in 1900 when Paramecia microorganisms were exposed to a photosensitive molecule in conjugation with sunlight, which was found to eliminate the fungal activity of
PDF
Album
Full Research Paper
Published 17 Jul 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • the importance of intracellular targeting has been addressed. Keywords: intracellular targeting; micelles; photodynamic therapy (PDT); photochemistry; polymer; self-assembly; Review Introduction After Paul Ehrlich, in 1900, had the very first notion of a drug being delivered at will to a specific
  • focus on the benefits provided by block copolymers in photodynamic therapy (PDT), as described schematically in Figure 1 [15]. Its concept lies in the use of photosensitizing molecules that have the ability to transfer their energy to oxygen upon irradiation, leading to the in situ formation of reactive
PDF
Album
Review
Published 15 Jan 2020

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • irradiation in two wavelengths. Another way is the attachment of a photodynamic therapy (PDT) agent. In this preliminary work, we used WS2-NTs with a wide size distribution range. A very important step for future research, required prior to in vivo trials, is to use nanotubes in a narrower size range
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • ]. Singlet oxygen is a short-lived, highly oxidative species with bactericidal and virucidal properties [6]. The cytotoxic effect can be intentionally employed in anticancer treatment in the form of photodynamic therapy (PDT) [7][8]. The most commonly utilised photosensitizers in PDT are porphyrins or
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes

  • Irina V. Martynenko,
  • Anna O. Orlova,
  • Vladimir G. Maslov,
  • Anatoly V. Fedorov,
  • Kevin Berwick and
  • Alexander V. Baranov

Beilstein J. Nanotechnol. 2016, 7, 1018–1027, doi:10.3762/bjnano.7.94

Graphical Abstract
  • tetrapyrrole molecules were of great interest due to their diverse application in many fields ranging from latest third generation solar cells [1][2][3] to photodynamic therapy (PDT) [4][5][6][7][8][9][10]. Currently, practically all PDT drugs are based on tetrapyrrole molecules. In the PDT process
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2016

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • average turn per base of DNA and the constituents of the system resulting from conformational strain. Catalytic activity of composite DNA nanostructures Considerable research efforts in the direction of controlled and improved ROS generation are being conducted for application in photodynamic therapy (PDT
  • therapy (PDT) applications as well as photocatalytic reactions. Keywords: DNA nanostructure; DNA–organic hybrid; DNA self-assembly; 2,6,14-triptycenetripropiolic acid; zinc protoporphyrin IX; Introduction Hybrid nanomaterials resulting from the covalent conjugation of DNA with organic molecules [1][2][3
  • block of the nanofibers. A notable change in photocatalytic efficiency of Zn PpIX was observed when it was inside the TPA–DNA scaffold. The significant increase in ROS generation by Zn PpIX when trapped in this biocompatible DNA–TPA hybrid nanofiber may be an effective tool to explore photodynamic
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016
Other Beilstein-Institut Open Science Activities